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Subsurface deformations in nematic liquid crystals: The hexagonal lattice approach
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In this paper the existence of subsurface deformations in the orientational ordering of a nematic liquid
crystal confined to a space between two planar substrates is studied by means of a lattice model. A superpo-
sition of the anisotropic induced-dipole–induced-dipole and isotropic Maier-Saupe interaction laws is used to
describe intermolecular interactions in the nematic phase. To model the nematic phase we use a simple-
hexagonal lattice, which does not introduce any bulk easy axes. The interaction nematic-confining surface
~external anchoring! is described with the Rapini-Papoular form. We show that there is always a subsurface
deformation in a layer of a few molecules when the intermolecular interaction law contains a nonzero fraction
of the anisotropic interaction. The deformation is ascribed to the competition of external and effective intrinsic
anchoring arising from the incomplete intermolecular interaction close to the surface. We also estimate the
extrapolation lengthl i as a measure of the intrinsic anchoring. This length turns out to be of molecular
dimensions for the pronounced induced-dipole–induced-dipole character of the interaction. However, the cor-
responding subsurface deformation strength, given by the normal derivative of the director component, is
considerably smaller than 1/l i , as the simplest estimate suggests. A realisticl i can be achieved in our model
only when the interaction anisotropy is considerably decreased.@S1063-651X~97!05507-4#

PACS number~s!: 61.30.Cz, 61.30.Gd
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I. INTRODUCTION

Nematic liquid crystals are anisotropic liquids consisti
of rodlike molecules. The average orientation of the lo
molecular axis is described by the unit vectorn, the director.
In the absence of external forces and torques the molec
in an infinite sample or deep in the bulk tend to orient p
allel to each other; thenn is a constant vectorn0 . Any cur-
vature of the director fieldn5n(r ) costs additional energy
The bulk elastic energy density is obtained by expanding
energy density in a power series of spatial director deri
tives ni , j5]ni /]r j around the equilibrium state withn
5n0. At the lowest order in the derivative operator] this
expression has been derived by several authors~e.g., by
Frank @1#! and can be written as

f F~r !5 1
2K11@“•n#21 1

2K22@n•~“3n!#2

1 1
2K33@n3~“3n!#2. ~1!

The three elastic constants correspond to three indepen
elastic modes: splay (K11), twist (K22), and bend (K33).
Expression~1! for the elastic energy density is valid only fo
an infinite sample. If the nematic sample has a bound
surface, there are two additional contributions to the lowe
order elastic energy density, which have been introdu
long ago@2–4#, but ignored for decades. The correspond
bulk elastic energy densities can be written as

f 24~r !52K24“•@n~“•n!1n3~“3n!#, ~2!

f 13~r !5K13“•@n~“•n!#, ~3!
561063-651X/97/56~1!/571~10!/$10.00
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whereK24 ~saddle-splay! andK13 ~splay-bend! are the elastic
constants connected with these contributions. Since th
terms are total divergences, their bulk integrals can be c
verted by means of the Gauss theorem into surface integ
so that they contribute only to boundary conditions. As su
the constantsK24 andK13 are also called surface-like. Whe
n depends just on a single Cartesian coordinate, theK24 con-
tribution vanishes identically. Furthermore, as discus
elsewhere, theK13 elastic term is renormalized by an elast
term linear inni , j @5–7# and by the presence of surface fiel
@8#. For this reason, from now onk13 will indicate the effec-
tive splay-bend elastic constant, which takes into acco
these contributions.

Although they look similar, there is an important diffe
ence between thek13 and K24 contributions. The first one
explicitly contains second-order derivatives in the comp
nents ofn, whereas the second one does not. In terms
surface quantities this is shown to be equivalent to the p
ence of the normal-to-surface derivative in the surface d
sity of thek13 term and its absence from that of theK24 term
@9#. If one tries to find the director profile for, e.g., a nema
liquid crystal between two parallel plates using the stand
variational procedure, these second-order derivatives
duce mathematical difficulties, predicting a discontinuous
rector profile close to the surface of the sample@10,11#. On
the other hand, the starting point of each continuum theor
an expansion based on weak deformations with respect to
molecular scaler0 (uni , j u!1/r0). Now a paradox emerge
@9#, which is just due to cutting the infinite expansion
finite order ~see also@12#!. There are two approaches fo
dealing with the problem.

The first approach is the second-order elastic theory@13–
15#, which introduces one effective higher-order term in
571 © 1997 The American Physical Society
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572 56G. SKAČEJet al.
the free-energy expansion in order to stabilize the distort
The former discontinuity now disappears and changes in
very strong but continuous variation of the director ove
distance of a few molecular dimensions. Its amplitude is p
portional to thek13 elastic constant@7#. The predicted sub-
surface distortion is still too large to be consistent with t
use of the continuum elastic theory (uni , j u;1/r0).

The other approach is the modified first-order theory@9#.
The origin of this theory has been ana priori assumption that
strong deformations are unphysical@9,16#, and have to be
suppressed by higher-order elastic terms. Surface eff
such as subsurface deformations are disregarded in@9#, and
for a nematic liquid crystal between two parallel plates w
symmetric anchoring this theory predicts a director pro
with no subsurface deformation at all@17#.

Recently, however, calculations in Refs.@5,6# showed that
the total effect of theK13 term might be compensated b
other surface elastic terms. In this case, a possible sourc
subsurface deformations can be anchoring. Indeed, in
@9# it was shown that the bulk source of anchoring can
reduced to pure surface anchoring and a term formally id
tical to theK13 term.

The goal of this paper is to explore a nematic liquid cry
tal close to its surface using a simple molecular model t
does not depend on any of the phenomenological approa
listed above. We would like to explore the possibility
deformations localized near the confining surfaces and tr
determine their strength and mechanisms that drive th
Analyses of this kind, using a different interparticle intera
tion and the hypothesis of strong surface anchoring in a
bic lattice, continuum, or smecticlike approximation ha
been recently reported@18–20#. Our paper is aimed at study
ing a similar problem, but thoroughly reexamining the def
mation strength, establishing a correlation between surfa
induced deformations and forces acting in the nem
sample to find actual physical mechanisms thereof and
role of lattice-induced artifacts in orientational ordering d
scribed by lattice models.

We are going to deal with a nematic liquid crystal b
tween two parallel plates, which is the simplest on
dimensional case. In Sec. II we propose a simple lat
model for the description of the nematic phase. The interm
lecular pairwise interaction law is going to be composed
Maier-Saupe and induced-dipole–induced-dipole inter
tions, which can be responsible for the formation of the ne
atic phase@21#. We evaluate the total energy and find t
director profile that minimizes it. The main results are p
sented and discussed in Sec. III.

II. MODEL

Let us consider a liquid crystal consisting of molecule
here described by molecular directorsn. For a pair of mol-
ecules with directorsn5n~R! and n85n~R8!, separated by
the vectorr5R82R, we use a simple intermolecular pai
wise interaction law

gv~n,n8,r !52
C

r 6 Fn•n823
«

r 2
~n•r !~n8•r !G2, ~4!

where« is the parameter of intermolecular interaction anis
ropy, which varies between 0 and 1, whileC.0 is the in-
n.
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teraction strength constant. For«50 we obtain the Maier-
Saupe interaction law, whereas for«51 the induced-dipole–
induced-dipole law is obtained. The interaction law~4! has
the same origin as the van der Waals interaction and inclu
~for «Þ0! anisotropic polarizability effects in nematic mo
ecules. For«50 the interaction is spatially isotropic, i.e., no
depending on ther direction. Then it just tends to orien
nematic molecules parallel to each other everywhere in
sample, producing no subsurface deformation. Interes
cases are therefore those with«Þ0. Considering the interac
tion law ~4!, we take into account only long-range interm
lecular interactions. It should be stressed that in our sim
calculation short-range interactions, such as steric repuls
between molecules taken into account in continuous mo
@22# and in dynamic studies@23#, will not be considered.

A lattice version of the Maier-Saupe model~«50! for a
nematic liquid crystal has been analyzed long ago usin
Monte Carlo technique@24#. In Ref. @24# the authors showed
that the nematic phase is stable in a given range of temp
ture. The nematic-isotropic phase transition is of first ord
as experimentally observed. A similar analysis for«Þ0, to
our knowledge, has not been done until now. A more sop
ticated analysis based on the molecular-dynamics techn
not using the lattice approximation has been published fo
different kind of interparticle potential@25#. The results seem
to indicate that the forces able to give rise to the nema
phase are the ones favoring side-to-side alignment. In S
III we will see that«<0.3 is required for the nematic state
our model. In this range of« the interaction law~4! indeed
favors side-to-side molecular alignment.

To simulate a liquid crystal, which is a continuous m
dium, on a lattice, one needs a model that does not introd
any artificial easy axes. Limiting our discussion to plan
deformations, the molecules are allowed to rotate in para
planes~xz planes! that are perpendicular to both walls~xy
planes!, while their mass centers are fixed to the latti
points. For our intermolecular interaction law the simp
hexagonal lattice with hexagons lying inxz planes, as shown
in Fig. 1~a!, introduces no bulk easy axis and thus satisfi

FIG. 1. ~a! NLC sample between two parallel plates; the mo
ecules are distributed into a hexagonal lattice.~b! The homogeneous
sample;f(k) is the molecular tilt angle in thekth layer.
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56 573SUBSURFACE DEFORMATIONS IN NEMATIC . . .
the above requirement. This kind of lattice is therefore m
adequate for our purposes than the cubic lattice used in
@18#.

The lattice is characterized by spacingp between layers,
where p→r0 ~r0;1 nm is the molecular dimension!; see
Fig. 1~a!. We will consider a slab ofN molecular layers. We
parametrize the director by the tilt anglew between the di-
rector and the surface normalz: n5~sinw,0,cosw!, where
w5w(z). The dependencew5w(z) has to be discretized
according to the distribution of molecules in the sample. T
same tilt anglef(k) is thus assigned to all molecules in th
kth molecular layer (z5const) for allkP@1,N#, as shown in
Fig. 1~b!. Both bounding surfaces induce certain easy ori
tationsf0 ,f1 . This affects mostly those nematic molecul
that lie close to the surface. In this analysis we are going
study only cases with symmetric external anchoring, wh
f05f1 . Further, we assume perfect nematic order, wh
means that the molecular director coincides with the nem
directorn everywhere in the sample. This would be inde
true only for the perfectly ordered phase at zero temperat
Furthermore, we assume the particle density to be cons
throughout the whole sample.

For the nematic-substrate interaction we assume@26#

gs~n,P,r !52
C1

r 6
@n•P#2, ~5!

where P is the substrate-induced easy axis andC1.0 a
constant. Let us introduce the parameterhW5C1 /C, which
measures the relative strength of the nematic-substrate
nematic-nematic interactions. The anchoring at the nema
substrate interface will be supposed comparable to the in
action responsible for the nematic phase. This meanshW
;1.

Now we must take into account all interactions betwe
nematic molecules and their interactions with the substrat
obtain the total energy of the sample (F). Let us consider the
bulk energy first. The position of each molecule is det
mined by a set of three numbers$a,b,g%, which are related to
the spatial Cartesian coordinatesx,y,z as follows: x
5p@2a1d(g)#/A3, y5pb, andz5pg. The functiond~g!
is equal to 1 ifg is even and 0 otherwise. In this way we ca
exploit the summation procedure already developed for
cubic lattice@18#. We denote the interaction energy of tw
molecules with positions $0,0,m% and $a,b,g% by
gv(m;a,b,g). The total bulk energy of one molecule in th
mth molecular layer can then be written as

f ~m!5 (
g51

N

(
a52`

`

(
b52`

`

gv~m;a,b,gÞm!

1 (
a52`

`

(
b52`

`

gv~m;aÞ0,bÞ0,m!, ~6!

where we must not count the contribution fora5b50 and
g5m since this would represent the interaction of a m
ecule with itself. The intermolecular vectorr can be written
in terms of counters a,b,g,m as r5p$@2a1d(g)
2d(m)#/A3,b,g2m%. The directorsn andn8 are expressed
e
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in terms of tilt anglesf(m) andf~g!, according to the pa-
rametrization introduced above.

The total bulk energy of the sample per unit surface
obtained by summing single molecular energies~6! over lay-
ers (m)

Fv5
s

2 (
m51

N F (
g51

N

(
a52`

`

(
b52`

`

gv~m;a,b,gÞm!

1 (
a52`

`

(
b52`

`

gv~m;aÞ0,bÞ0,m!G , ~7!

taking only half of this sum not to count each interacti
twice. Heres}1/p2 stands for the molecular density per un
surface. In a similar way we calculate the interaction ene
with the substrate for both plates. This is the external anch
ing energy per unit surface:

Fs5s (
m52M11

0

(
g51

N

(
a52`

`

(
b52`

`

gs~m;a,b,g,f0!

1s (
m5N11

N1M

(
g51

N

(
a5`

`

(
b52`

`

gs~m;a,b,g,f1!, ~8!

whereM is the number of layers by means of which th
substrate is approximated. We are going to consider o
cases withf05f1 .

If there is an external magnetic field, the correspond
energyFB has to be taken into account as well. The ene
of one molecule in themth layer with the directorn in the
external magnetic fieldB can be written asf B(m)5
2*0

BpB(m,B)•dB, where pB(m,B) stands for the field-
induced magnetic moment of the molecule. The interact
energy of the nematic molecule with the external field th
becomes@27# f B(m)52 1

2V0m0
21xa@n(m)•B#2, xa being

the microscopic anisotropy of the molecular susceptibili
m0 the permeability of the vacuum, andV0 the effective
volume of one molecule. The total magnetic energy of
sample per unit surface in now given by

FB5s (
m51

N

f B~m!. ~9!

Here it is convenient to introduce another dimensionless
rameterhB5V0p

6xaB
2/2m0C, which measures the strengt

of the magnetic interaction compared to the strength of
nematic-nematic one.

The total energy of the sample is composed of bulk a
surface contributions plus the energy due to external fie
that is,F5Fv1Fs1FB . We can hence induce deformation
in the nematic sample through either external anchoring
external fields. Once all molecular orientationsf(k) are
known, we can calculate the total energyF, which is then
minimized with respect to all variablesf(k). This is accom-
plished by setting

]F

]f~k!
50 ~10!

and]2F/]f(k)2.0 for everykP@1,N# and then solving the
system of nonlinear equations~10!. This can be done for an
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appropriate initial guess for the profile, e.g., with the mu
dimensional Newton ‘‘tangential’’ method. Here no ansa
for the director profilef(k) is used, so we are not restricte
to any particular class of functions. All calculations are ve
simple from the computer simulation point of view and c
be carried out on ordinary personal computers within a r
sonable amount of time.

III. RESULTS

Our intention is to simulate nematic liquid crystals. T
director profiles in the bulk are therefore expected to
smooth. However, we are going to use the lattice approxi
tion for this purpose, so we should expect that in cert
cases solutions for director profiles correspond rather to
solid state than to soft matter such as nematic liquid cryst

Each nematic molecule gives rise to an orienting field t
strongly depends on the interaction anisotropy paramete«.
In a simplified picture, the neighboring molecules try to o
ent themselves as required by this field. For«50 the field
consists of parallel lines only. No matter where the neighb
ing molecules are situated, they will orient parallel to the fi
molecule. In this way only a smooth nematic solution can
produced. For«Þ0 the orienting field does not consist o
parallel lines anymore. However, for low« ~«,0.4! this field
is still close to being parallel in the neighborhood of t
molecule where the nearest neighbors are positioned. Th
fore, the smooth nematic solution still represents the low
energy state. Further, in the high-« range ~0.4,«,1! the
orienting field close to the molecule becomes similar to
electric field of an electric dipole, directed along the lo
molecular axis. By decreasing« this field is stretched along
the long molecular axis, which results in the low-« field form
described above.

Let us now consider, in the high-« regime, a molecule
surrounded by the first six neighbors~in a plane!, arranged
into a hexagon, so that the long axis of the central molec
is, for example, parallel to two of the six sides of the hex
gon. At the sites of the four neighbors belonging to these
sides, the dipolelike orienting field is far from being paral
with respect to the central molecule. However, due to sy
metry reasons it is convenient for the four neighbors to t
an orientation that is tilted 90° with respect to the cent
molecule. Such a configuration has significantly lower e
ergy than the nematic one, in which all molecules are para
to one another. In this way we can assemble an arbit
sequence of tilts 0° and 90° throughout the nematic sam
This presents an example of a solid-state solution. Howe
also the smooth nematic solution still exists, but only for
angles close to either 0° or 90°, and it is metastable.
these reasons we should regard all solutions in the hig«
regime, including those of the nematic type, with care.
particular the briefly described solid-state solutions se
only as an illustration of lattice properties.

Let us now study the whole nematic sample. If there a
for example, no external fields, we can, for«.0.4, indeed
observe solutions with molecular tilt angles taking values
either 0° or 90°, changing from layer to layer in an arbitra
manner. The more switches between 0° and 90° a pro
f(k) contains, the lower its energy. The profile with th
lowest energy is the one in which the tilt angle changes fr
-

e
a-
n
e
ls.
t

r-
t
e

re-
t-

e

le
-
o
l
-
e
l
-
el
ry
le.
r,
t
r
-

e

,

f

le

0° to 90° in each layer, i.e., the one containing the perio
angle sequence. . . ,0°, 90°, 0°, 90°, . . . . In this family of
solutions the profiles starting with 0°, 90°, 90°, 90°, . . . or
90°, 0°, 0°, 0°, . . . arealso possible, which show an abru
subsurface deformation of enormous strength. But as th
profiles cannot be attributed to the nematic state, they m
not be confused with subsurface deformations we intend
study. For this reason we shall from now on consider o
«<0.3, where the nematic phase seems to be stable. Su
restriction also ensures that side-to-side molecular alignm
is favored, which is in agreement with the results of R
@25#.

It should be stressed that in the cubic lattice model@18#,
for large«, solid-state solutions have, in contrast to the he
agonal lattice, a considerably higher energy than nematic
lutions, which is due to the different form of the lattice. Th
lattice, however, suffers from either the planar or homeot
pic bulk easy axis.

In our model the liquid crystal has a limited size so th
only finite numerical summations are performed. For pra
cal reasons, i.e., saving computer time, we restrict the s
mation range even further~in samples with 71 layers to 17
molecular dimensions, while in those with 31 layers to
molecular dimensions!, which can cause errors of a few pe
cent when calculating director profiles, but does not cha
their qualitative character.

A. A slab of free nematic liquid crystal

Let us first consider a slab of nematic liquid crystal wi
no external anchoring or magnetic field. No external anch
ing situation can be realized in practice on a nematic-va
interface. In this manner we are able to explore effects du
incomplete intermolecular interactions. Molecular interacti
volumes are not complete spheres for those molecules
lie close enough to the surface. If the intermolecular inter
tion is spatially anisotropic~«Þ0!, these incomplete interac
tions can cause certain orienting effects. Since in our mo
there is no orienting torque in the bulk, it suffices to consid
the energy of the homogeneous sample only@f(k)5w0
5const; see Fig. 1~b!#.

If «50, all molecular orientationsw0 give the same en-
ergy. This is no longer true for«Þ0. For, e.g.,«50.3, the
solution with the lowest energy is the homeotropic homo
neous director profile (w050°). If nematic molecules are
turned away from their preferred direction, the energy of
sample increases. This orienting effect is therefore a kind
anchoring. From now on we shall describe it by the te
‘‘intrinsic anchoring’’ since it is just due to the lack of inter
molecular interactions. Its easy axis is homeotropic. This
sult is, to our knowledge, new for an intermolecular poten
of the kind ~4!. The same result has been obtained in R
@23#, where the Gay-Berne potential was used. To furt
explore the intrinsic anchoring, we calculate the energyF0 of
the homogeneous sample~per unit surface! for different
w0 . Dependences presented in Fig. 2 clearly show the ob
vations listed above.

To characterize this intrinsic anchoring we introduce t
intrinsic anchoring strengthh I ~anchoring energy per uni
surface! by fitting a parabola of the kind12h Iw0

2 to theF0 vs
w0 dependence~Fig. 2! close to the homeotropic easy axis
the intrinsic anchoring. The energy dependence for small
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viations from the easy axis is, like in the case of Rapi
Papoular anchoring, close to parabolic. The estimates
h I are for various« shown in the inset of Fig. 2. Instead o
expressingh I in terms of the interaction strength we expre
it through the de Gennes–Kle´man extrapolation lengthl i
5K/h I , whereK stands for the Frank elastic constant~here
K115K225K335K!. Therefore, we must estimate the elas
constantK for our model. This can be achieved by compa
ing distortion energies calculated from the phenomenolog
approach and from the lattice model for a particular distor
profile. Since we would like to avoid effects of thek13 term,
it is convenient to take an artificially bent profile, where t
deformation is mainly concentrated in the bulk, e.g.,w(z)
5a/$11b(z2d/2)2%, a and b being constants, andd the
thickness of the sample@28#. For an appropriate choice o
these parameters thek13-term contribution to the distortion
energy is negligible. The extrapolation length is now calc
lated by dividing the estimates forK andh I . For«50.3 one
finds l i;(1.660.2)r0 ; for «50.2, l i;(3.260.3)r0 ; for
«50.1, l i;(8.061.0)r0 ; while for «50.01, l i;(100
610)r0 , wherer0;1 nm is the molecular dimension~see
Table I!. The microscopic magnitude for the extrapolati
length reported above for the most anisotropic interact
~«50.3! agrees with the one evaluated in the continuum
proximation in Ref.@28#. A value ofl i in the molecular range
has been reported in Ref.@22# as a consequence of the asym
metric shape of nematic molecules. Experimental res
give, on the other hand, values over 100 nm for the extra
lation length@29#. This indicates that the intrinsic anchorin
given by this calculation is of the same order as the exp
mentally determined anchoring only if« is rather small

FIG. 2. Energy of the homogeneous sampleF0 vs tilt angle
w0 for different«. All curves have been shifted to the same start
point at w050°. In the inset the dependence intrinsic anchor
strengthh I vs « is shown; the sample thickness is equal toN531
layers.

TABLE I. Intrinsic anchoring extrapolation lengthsl i as esti-
mated for the homogeneous sample and for the sample in the
netic field, and the corresponding largest deformation amplitudeDf
in the latter case.

« ( l i /r0)hom ( l i /r0)mag Dfmax ~deg!

0.01 100610 110610 0.75
0.1 8.061.0 8.561.0 6.9
0.2 3.260.3 3.260.3 14.9
0.3 1.660.2 1.660.2 24.1
-
or

-
al
d

-

n
-

ts
o-

i-

~«&0.01!. However, it is important to stress that it is ve
difficult to compare the extrapolation length estimated abo
with the one experimentally detected. In fact, as shown
Ref. @30#, the value ofl i that is detectable results from all th
interactions characterizing the nematic-substrate or nem
vapor interface, for instance, steric, van der Waals, dipo
and electrostatic interactions due to selective ions adsorp
@31#, which give rise to a kind of ‘‘external’’ contribution to
the anchoring. In addition, in real systems close to the s
face, we have also variations of elastic constants@32#, scalar
order parameters@33#, density of mass, concentration of im
purities @34#, etc. These effects may change local elas
properties of the liquid crystal, resulting in a modification
the torque transmitted from the surface to the bulk and t
influencing the experimental determination of the anchor
energy.

B. A slab of free nematic liquid crystal in a magnetic field

In the preceding sub-section only undistorted director p
files were studied in order to extract information about
trinsic anchoring. Here we would like to repeat the estim
tion based on the simulation of distortions induced by
magnetic field in a free nematic slab. The magnetic fieldB
determines the orientation of molecules in the bulk far fro
the surface while close to the surface it competes with
intrinsic anchoring if the anglea between the direction ofB
and the surface normal is not zero. The consequence
deformation of the director profile. The amplitude of th
deformation is denoted byDf5fb2fs , wherefb andfs
stand for the bulk and surface tilt angles, respectively,
bulk tilt angle being measured in the middle of the samp
The molecules that are close to the surface gain more en
through intrinsic anchoring than they lose through chang
magnetic and bend energies. The total energy is then lo
than it would be if there was no distortion.

The phenomenological solution for the director profi
w(z) can also be obtained from the ordinary Frank elas
theory by adding the12h Iw0

2 intrinsic anchoring form and the
magnetic energy term@27# to Eq. ~1! and then carrying out
the ordinary variational minimization procedure. If the dire
tion of the magnetic fielda is close enough to the homeo
tropic intrinsic anchoring easy axis, we get a profile~for the
symmetric sample! of the form

w~z!5a1A

coshS z2d/2

j D
coshS d2j D , ~11!

the parameterA being related to the amplitude of the defo
mation, d the sample thickness, andj the characteristic
length of this field-induced deformation; the magnetic coh
ence lengthj5AKm0 /xaB

2 @27#. In Fig. 3~a! director pro-
files for various values of the parameterhB}B2, i.e., for
different field strengths, are shown. The stronger the m
netic field, the smaller the lengthj. The curves of the kind
~11! ~solid lines! with only one characteristic length~j! are in
agreement with the profiles calculated from our model~dots!.
This means that all our profiles can be described by
Frank elastic theory, where the splay-bend contribution

g-
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neglected. The main consequence of the interaction an
ropy ~«Þ0! occurs in the form of intrinsic anchoring, whic
is here the source of the deformation. The characteri
length of this deformation varies with the magnetic-fie
strength. We are even able to check the proportionalitj
}hB

21/2}B21, from where it is possible to extract the valu
of the elastic constantK and to check the reliability of ou
fits @Fig. 3~b!#. This is an alternative method for the determ
nation ofK. However, it is not very precise since the effe
tive molecular volumeV0 must be known.

If the magnetic field is strong enough, the bulk tilt ang
can be determined by the direction ofB (fb;a). For hB
50.2 the dependenceDf;(a2fs) vs fs is shown in Fig.
4. We decide to put the actual surface tiltfs instead of the
independent variablea along the abscissa, which enables
to compare this figure directly with Figs. 2 and 8, where
surface tilt angle is plotted along the horizontal axis too. F
«<0.3 the sign ofDf is positive and remains unchange

FIG. 3. Magnetic-field-induced distortions for«50.1 and differ-
ent values ofhB}B2; the angle between the fieldB and the surface
normal is equal toa50.1(180°/p)'5.73°. Dots denote calculate
director profiles and solid lines the hyperbolic cosine fit.~a! The
sample thickness is equal toN531 layers.~b! The dependence
j21 vs hB

1/2 for the upper case.

FIG. 4. DependenceDf vs fs for different «. The bulk tilt is
fixed by means of a magnetic field withhB50.2; N531 layers.
ot-

ic

s
e
r

through the whole range offs . This is because for these«
the intrinsic anchoring easy axis is always homeotropic. T
magnitude ofDf is largest approximately where the corr
sponding curve in Fig. 2 has the highest slope. The am
tude Df increases with increasing«, i.e., the intrinsic an-
choring strength.

Since both parametersA andj can be obtained by fitting
curves of the form~11! to the simulated curve, we can ex
tract also the anchoring strengthh I . The intrinsic anchoring
easy axis is denoted byf i . Routine calculations give the
relation ~for smallf i2a!

l i5
K

h I
5Ff i2a

A
21Gj cothS d2j D , ~12!

from which we obtain the following estimates for the e
trapolation length: for«50.3, l i;(1.660.2)r0 ; for «50.2,
l i;(3.260.3)r0 ; for «50.1, l i;(8.561.0)r0 ; and for
«50.01, l i;(110610)r0 , wherer0;1 nm again stands fo
the molecular dimension. These results agree with our e
mates from Sec. III A, where the simplified case with t
undistorted sample has been considered~see Table I!.

The deformation of the director field is a result of th
competition between intrinsic properties of the nematic a
the external magnetic field. If the intermolecular potential
weakly anisotropic~«!1!, the deformations are also wea
regarding director derivatives (uni , j u!1/r0). To become
strong (uni , j u;1/r0), the action of two unrealistically strong
couplings, the intrinsic anchoring, which is 102–103 times
greater than actual nematic anchoring, and the magnetic
with the coherence lengthj of a few nanometers, is require
@Figs. 3~a! and 4#.

C. A slab of nematic liquid crystal with external anchoring

In previous sections we treated idealized cases with
external anchoring and the deformation has been achie
through the action of the magnetic field competing with
trinsic anchoring. In real nematic cells there is always r
surface anchoring, which in principle can have an easy a
different from the one intrinsic anchoring favors. Extern
anchoring, caused by the interaction between nematic m
ecules and the substrate, is, in contrast to magnetic field
fects, strong only for those molecules that lie close to
surface. Since effects of the intrinsic anchoring are also
stricted to a thin subsurface layer, it is now more difficult
predict the profile resulting from the competition of bo
anchorings. The external anchoring strengthhW can be also
expressed in terms of the corresponding extrapolation len
l e5K/hW , whereK is determined as in Sec. III A. For in
stance, in case ofhW51 and «50.1 this yields l e5(1.4
60.2)r0 , which is too short to describe the experimen
values. Similarly to the case of intrinsic anchoring, a reas
able value of the extrapolation length can be obtained fo
much weaker surface coupling (hW&0.01).

A deformation of amplitudeDf now appears in a thin
subsurface region of only 2–3 molecular layers~see Figs. 5
and 6!. Its magnitude depends on« ~which regulates the
intrinsic anchoring strength!, the external anchoring strengt
hW , and the corresponding easy directionf0 . In the bulk
the tilt angle approaches the constant valuefb , as predicted
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from the Frank theory. Each profile is characterized by t
main features: the surface tiltfs and the amplitude of the
deformationDf5fb2fs .

In order to understand the source of the deformation
shall have a closer look at the effects of intrinsic anchori
The largest contribution to the intrinsic anchoring com
from molecules that are closest to the surface, i.e., lying
the first subsurface layer of the liquid-crystal sample. Sin

FIG. 5. Director profiles in a sample with noncontact exter
anchoring for different «. The easy axisf050.2(180°/p)
'11.46°, the anchoring strength~a! hW51 and ~b! hW510, and
N571 layers.

FIG. 6. Director profiles in a sample with noncontact exter
anchoring for different«. The easy axisf05(p/220.2)(180°/p)
'78.54°, the anchoring strength~a! hW51 and ~b! hW510, and
N571 layers.
o

e
.
s
n
e

the intermolecular interaction does not abruptly vanish o
one molecular dimension, molecules deeper in the bulk a
contribute to the intrinsic anchoring, but to a much smal
extent. For these molecules the intrinsic anchoring-indu
easy axes can, due to different geometry, differ from th
induced by the first layer alone. For our interaction, whi
decreases relatively fast with increasing distance, the m
contribution to the intrinsic anchoring energy of the who
sample arises from the first molecular layer and the con
butions of the following ones are small enough that they
not influence the easy axes anymore.

The surface tiltfs is determined by the competition o
external and intrinsic anchoring in the first molecular lay
favoringf0 andf i , respectively. The anglefs always takes
a value betweenf0 andf i . In the deeper-lying layers the
effects of both kinds of anchoring are considerably weak
but still of comparable strength in contrast to the magne
case~Sec. III B!, where the magnetic-field strength remain
unchanged throughout the sample. In order to explain
sign ofDf, we must again compare effects of both anch
ings, now studying layers that follow the first one. The i
trinsic anchoring strength can, depending on« andfs , de-
crease slower or faster in comparison to external ancho
when penetrating into the bulk. Then effects of the slow
decreasing anchoring are the ones that prevail there. M
over, intrinsic anchoring-induced easy axes are also« depen-
dent and, as already stated, not necessarily the same as
first layer.

These phenomena are much more evident if we us
contact potential for external anchoring acting only in t
first molecular layer, but having otherwise the same form
in Eq. ~5!. Such an anchoring could be due, e.g., to ste
surface effects. In this case the molecular tilt in a cert
layer beyond the first one is determined by intrinsic anch
ing only. Some director profiles for this kind of anchorin
are presented in Fig. 7. For«<0.3,Df is negative, according
to intrinsic anchoring, which in this range of« favors f i
50° also for the layers beyond the first one~the external
contact anchoring easy axis is heref0545°!.

In the rest of our discussion only noncontact external
choring will be treated. The dependenceDf vs fs for such
an anchoring is shown in Fig. 8 and is significantly differe
from the one obtained for the magnetic-field-induced def
mation~Fig. 4!. There are two regimes regarding the beha
ior of Df if we changefs ~Fig. 8! ~a! For «<0.1 the sign of

l

l

FIG. 7. Director profiles in a sample with contact external a
choring for various«. The external anchoring easy axisf0545°,
the anchoring strengthhW51, andN531 layers.



a

lk

a

f

a
r

e
t

i-

la

o

re

e

an

-

re
u

al-

an-

. 9,
he

-
ted

the

of
hor-

ur
-
our

n

face

, al-

ex-
on

ted

for-
he-

pic
nd
rted
ue
ives
ce

t

-

578 56G. SKAČEJet al.
Df remains unchanged through the whole range offs and is,
in contrast to the magnetic-field case, negative. In this c
intrinsic anchoring effects, favoringf i50° in all layers, de-
crease slower than external anchoring effects, favoringf0
Þf i , when penetrating into the bulk. Therefore, in the bu
intrinsic anchoring prevails and moves the tilt towardsf i
50°. ~b! For 0.1,«<0.3 all this is true only for largefs ,
which again gives a negativeDf, while for the small ones it
is just the opposite: external anchoring effects decre
slower than the intrinsic ones;Df is then positive. The in-
trinsic anchoring-induced easy axis is here the same as
«<0.1, that is, homeotropic.

Another parameter that can be varied is the external
choring strengthhW . In Figs. 5 and 6 we show the directo
profiles only for very strong anchoring (hW51,10), where
differences in the behavior for different« are clearly visible.
If hW is large, i.e., l e! l i , Df becomes small since th
substrate-induced orienting effects penetrate deep into
bulk. On the other hand, ifhW is small (l e@ l i), effects of
the intrinsic anchoring prevail, causingfs→0°, which again
yields a very small deformation amplitudeDf. In between
these two limitsDf exhibits a maximum whose actual pos
tion depends on« andfs ~or f0!.

Let us compare our dependencesDf vs fs ~Fig. 8! with
those predicted by the phenomenological second-order e
tic theory @13#. This theory predicts the proportionalityDf
}sin 2fs , the characteristic length of the surface mode
the order ofr0 , and the surface derivativeu(ni , j )su;1/r0 .
Good quantitative agreement of our results with the theo
ical prediction for the proportionalityDf}sin 2fs takes
place for small«&0.01. For 0.01&«&0.1 the extremum of
the calculated dependence shifts fromfs545° ~expected for
Df}sin 2fs! to a larger value, therefore only qualitativ
agreement is present. However, for even larger« also this
agreement vanishes as the calculated dependence ch
sign in the range 0°,fs,90°.

Let us now further explore the agreement for«,0.1,
whereDf}sin 2fs is still a sufficiently good approxima
tion, by plotting the dependenceDf vs «. If we choosefs
'45°, within the second-order theory the relationDf;
2k13/2K holds@7#. The microscopic expressions for the ba
splay-bendK13 and the Frank elastic constants are in o
case found to beK1352(J/5)«@211(9/7)«# and K
5(J/3)@12(12/5)«1(54/35)«2#, where J is connected

FIG. 8. DependenceDf vs fs in a sample with noncontac
external anchoring (hW51) for different«; N531 layers.
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with the intermolecular interaction~for details see@35#!. The
ratio2K13/2K and, consequently,Df are therefore« depen-
dent too. This theoretical prediction is compared to our c
culations in Fig. 9, which shows the dependenceDf vs « for
nematic samples with contact and noncontact external
choring, but only for«,0.1, where the sin 2fs dependence
can be reproduced by our model. As it is evident from Fig
the agreement is only in the functional form, but not in t
deformation amplitude, if the bareK13 splay-bend elastic
constant is used fork13. In addition to the neglect of higher
order terms in the second-order theory, this can be attribu
also to a possible renormalization of the bareK13 constant
due to reduced symmetry of the nematic phase near
boundary@7# and due to surface fields@8#. The latter possi-
bility is in agreement with a significant difference in slope
the plotted curve for contact and noncontact external anc
ing.

The characteristic length of deformations found in o
simulation is a few~;2–3! molecular dimensions as pre
dicted by the second-order elastic theory. However, for
range of allowed interaction anisotropy«<0.3, the amplitude
of the deformationDf is rather small. Thus the deformatio
is weak, although its characteristic length is still aboutr0 .
The deformation strength expressed in terms of the sur
director derivativeu(ni , j )su is, for the calculated profiles
~«<0.3 andhW&1!, alwaysu(ni , j )su&231022/r0!1/r0 . It
should be stressed that the deformations are not strong
though in the above range of parameters« and hW both
external and intrinsic anchoring are much stronger than
perimentally observed. In particular, the deformati
strength is much smaller than 1/l i and 1/l e , which are the
only natural dimensional estimates. This should be attribu
to the suppressing effect of higher-order elastic terms.

IV. CONCLUSION

We have studied the existence of strong subsurface de
mations in nematic liquid crystals predicted by some p
nomenological approaches@10# and denied by the others@9#.
For this purpose we have developed a simple microsco
lattice model whose main advantages are its simplicity a
the absence of the lattice-induced bulk easy axis. We sta
by analyzing the incomplete intermolecular interaction d
to the presence of a bounding surface. This interaction g
rise to an intrinsic anchoring, which introduces a surfa

FIG. 9. DependenceDf vs « in a sample with external anchor
ing, with hW51, f0545°, andN531 layers:~a! noncontact an-
choring, ~b! contact anchoring, and~c! the theoretical prediction
with the bareK13 constant.
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easy axis. The direction of this easy axis and the ancho
strength depend on the parameter« of the interaction anisot-
ropy, but in the« range in which the model is expected
work well ~«<0.3!, the easy axis is expected to be all t
time homeotropic. The same result has been obtained
for different kinds of interaction energy: in Ref.@23#, using
the Gay-Berne potential, and in Ref.@22#, studying the
Maier-Saupe interaction between ellipsoidal molecules. T
qualitative behavior of the easy axis is similar also to
preliminary results achieved with the continuous model@36#,
where both the interaction anisotropy and the anisotropy
shape can be varied. The estimate of the intrinsic contr
tion to the de Gennes–Kle´man extrapolation length is fo
«;0.3 of the order of the molecular dimensionr0 , whereas
it should be, according to experimental data, at least
times larger. Our estimates for the extrapolation length
proach the standard experimental finding in their order
magnitude only for very small values«&0.01.

Imposing an external magnetic field or external anchor
~nematic-substrate interaction! results in a deformation of the
director profile. The form of the deformation can be quali
tively explained alone by the competition of the intrins
anchoring with external forces present in the system:
magnetic field, in the former case, and external anchoring
the latter case. For experimentally achievable magnetic fi
~z;100 nm!, the deformations are weak: They are relative
weak even in the case of very strong external and intrin
anchoring, which indicates a considerable contribution
higher-order elasticity.

A subsurface deformation is produced as soon as the
competing effects exhibit different behavior~i.e., the corre-
sponding forces are not collinear and have a different ran!
when penetrating from the surface into the bulk; which h
been found just recently also by Teixeira@42# using the den-
sity functional approach. The dependence deformation
plitude Df versus surface tilt anglefs following from the
theory of strong@13# K13-term-induced subsurface deform
tions can be quantitatively reproduced only for small«,
where the deformations are very weak. In addition, the
fective splay-bend elastic constantk13 seems to be consider
ably smaller than the bareK13 constant. Our analysis show
that in order to compare the extrapolation length obtained
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the framework of our model and the one experimenta
measured, we have to assume a small anisotropy of the
terparticle interaction~«&0.01! and a rather weak surfac
coupling (hW&0.01). This also suggestsk13!K. In this
limit the subsurface deformation still exists and is deloc
ized over a few molecular lengths. Consequently, the nor
surface derivative of the orientation angle is small, as
quired by the elastic theory. This conclusion holds only
spatial variations of scalar order parameters, elastic c
stants, density, and impurities concentration do not consi
ably change the elastic properties of the nematic liquid cr
tal and thus prevent us from assuming that the experimen
giving the actual anchoring strength. Moreover, in our ana
sis we assumed temperature to be equal to zero and co
quently assumed the presence of perfect nematic orde
contrast, in a real case withT.0 the nematic order is no
longer perfect, which is expected to effectively decrease
anisotropy of the interaction and the corresponding intrin
anchoring strength.

Further, it should be realized that in our model we co
sider only the anisotropy of the van der Waals–type int
molecular interaction. However, real nematic molecules
anisotropic in shape, which gives rise to an anisotropy
duced by short-range forces due to steric repulsion@37#. The
latter kind of anisotropy is expected to decrease the intrin
anchoring strength and, consequently, the deforma
strength. Another complication of the interfacial behavi
which for certain intermolecular and surface interactions c
occur, is surface-induced smectic ordering. This ordering
been observed in several nematic materials@38,39# and also
in some model systems, even if the lattice approximat
was not used@40,41#. Therefore, one must take our finding
as a first step towards an understanding of the microsc
picture of subsurface deformations in the nematic liqu
crystal.
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